LIFE - CYCLE COST ANALYSIS (LCCA) OF ENERGY INTERVENTIONS IN HELLENIC BUILDING STOCK WITH EMPHASIS ON THE REPLACEMENT OF THE HEATING SYSTEM/PRODUCTION OF DOMESTIC HOT WATER

Antonios Liolios, EnaonS. Karellas, Professor NTUADr. Platon Pallis, Teaching staff NTUA

2

Techno economical comparison of energy interventions in Hellenic building stock

Contents

- 1. Introduction
- 2. Typical buildings, construction periods and climate zones
- 3. Heating & DHW systems existing & evaluated
- 4. Energy Consumptions Results
- 5. Energy prices & Investment Cost Assumptions
- 6. Economic Analysis of LCC & PbP Results
- 7. Findings & Conclusions

Introduction

- EPBD Amendments
- 2018 → nZEB near Zero Energy Building
- * 2025 \rightarrow ZeB Zero emissions Building
- EU buildings energy consumption reduction targets by 2030 & 2055
- National building stock renovation > 16% by 2030 & 20-22% by 2035
- All members states: National Building Renovation Plan by the end of 2025

Cost effective - Cost optimal assessment

Effective Methodology since 2015 for designing energy retrofit policies Numerous studies and papers about cost optimal assessment in various countries and typical buildings

AN ITALGAS CO

Introduction

Current study

Cost effectiveness – cost optimal assessment based on Life Cycle Cost (LCC), Depreciated Payback Time (DPP) and Primary Energy Consumption (PEC) of buildings examined:

- **3** Typical buildings
- □ Various Intervention Packages **focused on heating and DHW systems**
- **4** Construction Periods (CPs) for existing buildings
- **4** Climate Zones (CZs) of Greece

MFH multi family house SFH single family hoyse OB office building CZ climate zone

Typical buildings, construction periods and climate zones Typical buildings

Multi family house 3-storey apartment building

Office building 5-storey office building

Construction Periods

心	1. Prior to 1980	No insulation
	2. 1980 – 2010	Insulation based on first insulation regulation of Greece (1979 - KOK)
厠	3. 2011 – 2017	Insulation based on KENAK 2010
Îά	4. 2018 to date	Insulation based on KENAK 2017

Climate Zones

1. Climate	Greek Islands, South
Zone A	Peloponnese
2. Climate	North Peloponnese, Central
Zone B	Greece incl. Attica
3. Climate	Central & East Macedonia,
Zone C	Thrace
4. Climate	West Macedonia and
Zone D	Drama prefecture

5

Important aspect \rightarrow The majority (around 50-55%) of the buildings in the country were built before 1980.

Existing heating system / Domestic hot water (DHW) system

Construction Period	Single Family House	gle Family House Multi Family House Office building	
1. Prior to 1980	Oil boiler / Electric heater	Central Oil boiler / Electric heater	Central Oil boiler
2. 1980 – 2010	Oil boiler / Electric heater	Central Oil boiler / Electric heater	Central Oil boiler
3. 2011 – 2017	Oil boiler or Gas boiler & Solar thermal for DHW	Central Oil or Central Gas boiler & decentralized Solar thermal for DHW	Central Heat Pump
4. 2018 – 2022	Oil boiler or Gas boiler & Solar thermal for DHW	Central Oil or Central Gas boiler & decentralized Solar thermal for DHW	Central Heat Pump

7

Heating & DHW systems evaluated

New heating system / DHW system

Single Family House	Multi Family House	Office building	
Condensing Gas boiler	Central & Decentralized Condensing Gas boiler	Central Condensing Gas boiler (only for periods 1 & 2)	
High Temperature Heat Pump	Central High Temperature Heat Pump	Central Medium Temperature Heat Pump	
Medium Temperature Heat Pump	Decentralized Medium Temperature Heat Pump	Central Hybrid system	
Hybrid system	Central Hybrid system	VRF system	

Other interventions

Cooling system – New split units	Cooling system – New split units	Cooling system – New chiller
Insulation & Windows replacement	Insulation & Windows replacement	Insulation & Windows replacement
Solar thermal system for DHW	Solar thermal system for DHW	Ventilation system (AHU) upgrade
PV system (net billing)	PV system (net billing)	Lighting upgrade with LED
		PV system (net billing)

Total simulated scenarios

Construction Period	Single Family House	Multi Family House	Office building
1. Prior to 1980	224	288	96
2. 1980 – 2010	224	288	176
3. 2011 – 2017	56	72	72
4. 2018 – 2022	56	72	72
Sum	560	720	416

Energy Consumption Results – Single Family House (SFH) example

Single Family House - 1980 Ind. Climate Zone B	Heating Consun	Cooling Notion k	MHO Wh/m ²	PEC kWh/m²
Existing (No Insulation)	384.1	29.6	22.2	508.2
New Gas Boiler + Solar collector + Insulation	35.2	6	6.2	53.3
New Gas Boiler + Solar collector + Insulation + PV	35.2	6	2	42.5
New H/P (Med T) Solar collector + Insulation	10.7	7.1	2	29.4
New H/P (Med T) Solar collector + Insulation + PV	10.7	7.1	2	8.4
New Hybrid System Solar collector + Insulation	15.3	7.1	6.2	37.1
New Hybrid System Solar collector + Insulation + PV	15.3	7.1	6.2	15.9

9

Energy Prices Assumptions

Indicative energy prices

Financial rates of basic economic evaluation

Energy price development \rightarrow **Increase of 2.8** % per year

Discount Rate 7% for Private evaluation / (3% for Macroeconomic evaluation)

Investment Cost Assumptions

> New system purchase & installation cost at an existing building based on the Pgen of the building.

Central Gas Boiler					
Purchase& Installation (€)	Connection fees ³ (€)				
2,598	245.5				
3,751	245.5				
4,904	245.5				
8,246	334.8				
16,504	334.8				
23,349	334.8				
31,248	334.8				
	Central Gas B Purchase & Installation (€) 2,598 3,751 4,904 8,246 16,504 23,349 31,248				

Cost includes:

- certified condensing gas boiler (installed at existing hot water piping network)
- circulation inverter pump
- Gas piping
- labour cost
- * Only for climate zones B & C

Note: All prices include VAT

Heat Pump (low temp – 55° C)				
kW	Purchase & Installation (€)	Electrical upgrade cost (€)		
8	7,148	400		
12	10,000	400		
20	12,003	400		
35	20,602	400		
50	34,199	400		
100	58,450	560		
200	98,813	560		
400	181,198	560		

Cost includes:

- H/P installed (at existing hot water piping network)
- circulation inverter pump
- labour cost Does not include new fan coils, cost of which is 279€ / kWth (VAT incl.)

Heat	Heat Pump (High temp – 70° C)					
kW	Purchase & Installation (€)	Electrical upgrade cost (€)				
8	10,800	400				
12	11,048	400				
20	12,698	400				
35	23,951	400				
50	42,501	400				
100	74,699	560				
200	139,824	560				
400	259,601	560				

Cost includes:

- H/P installed (at existing hot water piping network & terminals)
- circulation inverter pump
- labour cost

Hybrid System pricing is the sum of a gas boiler and a HP with 70% of the heating design capacity. For CP3 & CP4 if there is an existing gas boiler or HP then it is combined with a new HP or boiler respectively.

Primary energy and emissions factors

Evolution of primary energy conversion $\& CO_2$ emission factor for electricity by year intervals 2022-2050 (based on revised NECP - Dec 2024)

	2022	2025	2030	2035	2040	2045	2050
Primary energy conversion factor for electricity	1.79	1.49	1.20	1.07	1.05	1.03	1.03
CO ₂ emission factor for electricity (kg _{CO2} /kWh)	0.398	0.327	0.063	0.025	0.017	0.009	0.010

Considered EU ETS carbon prices (€/tnCO2) by year interval

EU ETS carbon price					
Time Period	Value	Unit			
2023-2025	86	€/tn _{CO2}			
2026-2030	100	€/tn _{CO2}			
2031-2050	182	€/tn _{CO2}			

AN ITALGAS CC

Methodological Approach

Single Family House (SFH)Multi Family House (MFH)Office building

Economic calculations for every simulated scenario – alternative technologies evaluation

Financial analysis:

- Life Cycle Cost LCC in \in/m^2
- Depreciated payback period PbP in years

Graphs

- LCC & PbP vs Primary Energy Consumption (PEC)
- Cost optimal region frequency graphs

Further Economic results for intervention packages (IPs) include:

- Initial investment cost
- Operation and Maintenance cost (O&M)
- Total energy cost
- Greenhouse emissions cost
- Residual value & Disposal cost
- Global cost LCC

Methodological Approach

Cost optimal region: LCC Range = Min LCC+10%(Max LCC – Min LCC) PEC Range = 1.5 x Min PEC

Supporting tool of Frequency graphs: Showing no. and type of scenarios within Cost Optimal Region

1/9 existing boiler 6/9 gas boiler 2/9 HP med T en

15

2

LCC vs PEC

PbP vs PEC

Single Family House

Constr. Period 2: 1980-2010

Climatic Zone B

17

MFH <1980 Zone D 50 45 40 35 PbP financial(years) Exist.Oil boiler-A/C Gas boiler-exist.A/C Gas boiler-new A/C Ind.Gas boiler-exist.A/C Ind.Gas boiler-new A/C HP High T-exist.A/C HP High T-new A/C HP Med T (FcUs) Hybrid 15 0 250 50 100 150 200 300 350 400 0 Primary energy consumption (kWh/year/m²)

LCC vs PbP

Basic Conclusions on Multi Family House

Constr. Period 1: pre-1980

- All technologies included in retrofitting measure packages can achieve very low PEC (< 50 kWh/m2).
- Natural gas packages achieve lowest LCC (€/m2) and lower PbP while Heat Pump packages achieve lowest PEC (kWh/m2).
- Going from the mildest to the coldest climate zone LCC increases for the same technologies while;
- **Central systems** have half or even less LCC than individual (autonomous) ones.
- Net billing PV systems have a **positive impact** (in contrast with SFH cases).

Constr. Period 2: 1980-2010

- Natural gas packages achieve lowest LCC (€/m2) and lower PbP while Heat Pump packages achieve lowest PEC (kWh/m2).
- Central VS Individual LCC gap is reduced due to separate heating piping network → Ind. Gas boiler systems have less LCC than P1.
- Generally similar to previous period with less positive impact of passive measures & larger **financial gap**.

Constr. Period 3: 2011-2017

• Apart from climate zone A & D (where existing system is oil boiler) no scenarios with reasonable PbP exist.

Constr. Period 4: 2018-2023

• As general remark, no interventions are financially feasible (exceptions in existing oil boiler cases)

endon AN ITALGAS COMPANY

LCC, PEC & DPP Performance table

Multi Family House

Best Interventions Packages for LCC, PEC & DPP for all periods and climate zones for MFH

			Lowest LCC					Lowest PEC				Lowest DPP			
		CP/CI.Z	А	В	С	D	А	В	С	D	А	В	С	D	
			New Ce	entral Gas B	Boiler/exist	t. A/C	No	Control	متامطا	п	New Central Gas Boiler				
		CP1 Pefere	No Insulation		Insulatio	n	ne	Insulat	ion	٢		exist.	.A/C		
spc	ouse	1980		PV No Solar	DHW			PV No Insulation Solar DHW No Solar DHW							
Constructions peric	· Family Ho	CP2 1980-2010	New Ce	entral Gas B No Insu PV No Solar	Boiler/exist lation DHW	t. A/C	Ne	w Central Insulat PV Solar D	or Ind. H tion PHW	Ρ	New Central Gas Boiler exist. A/C No Insulation No PV No Solar DHW				
	Multi -	CP3 & CP4 2011 - today (exist. Solar DHW)	CP3 & CP4 2011 - today (exist. Solar DHW)New Central Gas Boiler exist. A/C No PVexist. Central Gas Boiler / exist. A/C No PVNew Central Gas Boiler exist. A/C No PV					Central or Ind. HP PV				exist. Ga exist. No	as Boiler . A/C PV	New Central Gas Boiler exist. A/C No PV	

General Conclusions

All technologies in all typical buildings can reduce PEC at nZEB levels with or without synergies of other measures depending on each case

RESIDENTIAL:

- > Lower LCCs and PbP is mostly achieved with condensing gas boilers & lower PECs with HPs
- Insulation is economically viable only in CP1
- > PV systems is not cost effective in SFH while the opposite stands for MFH
- ➤ CP3 & CP4 cases → Only when existing oil boiler (cl. Zones A & B) is replaced by a condensing gas boiler.

OFFICE:

- > All technologies result in similar LCCs especially in CP1 & CP2.
- Significant impact is made by the PV and the LED interventions in all CPs
- Heat Pumps result in the Lowest LCCs
- VRFs give the lowest PEC

Overall, there is no single, universally optimal energy technology solution. Instead, choices should be based on rational, context-specific criteria such as the use, location, age, and scale of a building—as these factors significantly affect outcomes in terms of energy efficiency, LCC, and DPP, beyond any ideological considerations.

Thank You For Your Attention!

S. Karellas, Professor NTUA

Laboratory of Thermal Processes Laboratory of Steam Boilers and Thermal Plants School of Mechanical Engineering National Technical University of Athens Iroon Polytechneiou 9, 15780, Zografou sotokar@mail.ntua.gr www.lsbtp.mech.ntua.gr

Annex

Energy Consumption Results - MFH

Multi Family House - 1980 Ind. Climate	Heating	Cooling	МНО	PEC kWh/m²		
Zone C	Consur	nption k	Wh/m ²			
Existing (No Insulation)	302.5	9.8	20.4	381.9		
New Gas Boiler + Solar collectors + Insulation	32.7	2.5	9.7	50.2		
New Gas Boiler + Solar collectors + Insulation + PV	32.7	2.5	9.7	41.7		
New H/P (High T) Solar collector + Insulation	11.8	2.5	2.9	25.6		
New H/P (High T) Solar collectors + Insulation + PV	11.8	2.5	2.9	7		
New Hybrid System Solar collectors + Insulation	19	2.9	6.2	35.9		
New Hybrid System Solar collectors + Insulation + PV	19	2.9	6.2	16.4		

24

Energy Consumption Results - Offices

Office building - 1980 Ind. Climate Zone B	A Heating	[™] oo O sumptio	Lighting	PEC kWh/m²		
Existing (No Insulation)	75.4	52.8	15	241.1		
New Gas Boiler + Insulation	5.3	10.3	15	45.9		
New Gas Boiler + Insulation + PV	5.3	10.3	15	22.2		
New H/P + Insulation	3.1	10.3	15	42.3		
New H/P Insulation + PV	3.1	10.3	15	20.2		
New Hybrid System + Insulation	3.6	10.3	15	44.2		
New Hybrid System Insulation + PV	3.6	10.3	15	20.6		

Basic Conclusions on Single Family House

Single Family House

Constr. Period 1: pre-1980

- All technologies included in retrofitting measure packages can achieve low PEC (even below 50 kWh/m2).
- Natural gas packages achieve **lowest LCC** (€/m2) and **lower PbP** while Heat Pump packages achieve **lowest PEC** (kWh/m2).
- Going from the mildest to the coldest climate zone <u>LCC increases for the same technologies</u>.
- Net billing PV systems increases LCC and PbP in the majority of scenarios that is included.

Constr. Period 2: 1980-2010

- Natural gas packages achieve **lowest LCC** (€/m2) and **lower PbP** while Heat Pump packages achieve **lowest PEC** (kWh/m2).
- Generally similar to previous period with less positive impact of passive measures & larger **financial gap**.

Constr. Period 3: 2011-2017

• Apart from climate zone A & D (where existing system is oil boiler) no scenarios with reasonable PbP exist.

Constr. Period 4: 2018-2023

• As general remark, no interventions are financially feasible.

LCC, PEC & DPP Performance table

Single Family House

Best Interventions Packages for LCC, PEC & DPP for all periods and climate zones for SFH

		Lowest LCC					Lowest PEC				Lowest DPP				
	CP/CI.Z	А	В	С	D	А	В	С	D	А	В	С	D		
	CP1	New Gas Boiler/exist. A/C Insulation No PV No Solar DHW						∕led ation √ DHW		HP Med No Insulation No PV No solar DHW New Gas Boiler exist. A/C Insulation No PV No PV No Solar DHW					
mily House	CP2	Ne	ew Gas Boiler. No Insula No P\ No Solar [HP N Insula Pי Solar	Aed ation √ DHW		New Gas Boiler exist. A/C No Insulation No PV No Solar DHW							
Single-Far	CP3 (exist. Solar DHW)	New Gas Boiler exist. A/C No PV	exist. Gas Boiler exist. A/C No PV	New C exi N	Gas Boiler st. A/C lo PV		HP N P'	∕led V		New Gas Boiler exist. A/C No PV	exist. G exist No	as Boiler t. A/C 9 PV	New Gas Boiler exist. A/C No PV		
	CP4 (exist. Solar DHW)	New Gas Boiler exist. A/C No PV	exist. Gas exist. / No P	s Boiler A/C PV No PV		HP Med PV			exist. Oil/Gas Boiler exist. A/C No PV			New Gas Boiler exist. A/C No PV			

Multi Family House

Constr. Period 1: pre-1980

Climatic Zone C

Heating/Cooling systems graph

PV/no PV graph

LCC vs PEC

endon

LCC vs PEC

Office building

Constr. Period 1: pre-1980

en

LCC vs PEC

Office building Constr. Period 1: pre-1980 Climatic Zone B

Heating/Cooling systems graph

en

250

0

50

100

Primary energy consumption

Office building Constr. Period 1: pre-1980 Zone C **Zone A** e Cost financial(€/m²) 00 05 00 00 00 00 00 **Cost optimal regions**) 400 C) Aller 250 -All technologies With PVs & LED 300 • 250 20 40 60 80 Insulation in zones C & D 0 Primary energy ₹ 500 Zone B al(€/i Zone D financia 450 Cost 0 400 Cycle Exist. Oil boiler
Gas boiler 9 350 Hybrid HP VRF 300 • •

endon

All alternative technologies combined with PV and LED within cost optimal region

Primary energy consumption (kWh/year/m²)

Fewer alternative technologies combined with PV and LED within cost optimal region

Primary energy consumption (kWh/year/m²)

Basic Conclusions on Office Buildings

Office building

Constr. Period 1: pre-1980

General Remark: Office building has **less heating** demand and higher cooling while **lighting** consumption is also significant. Alternative systems LCC-PEC are very close to each other when in the same PV, LED cluster.

- Alternatives in cost optimal region **do not include gas systems in zones A & B** but do include them in zones C & D.
- Lower PEC give VRF systems, highest PEC gas-chiller systems.
- HP gives lower LCC and PbP in zones A,B,C marginally in comparison to Gas and Gas gives less in zone D.
- PEC increases from mild to coldest climate zone but not intensively due to less heating demand.
- **PV systems show less LCC and less PEC** in every case and have low impact on PbP.
- Insulation is included in cost optimal scenarios only in zones C & D.

Constr. Period 2: 1980-2010

- 2010
- All new systems only combined with PVs & LED within cost optimal region.
- PEC increase from mild to coldest climate zone is very limited due to existence of basic insulation.
- PV systems show less LCC and less PEC in every case and have low positive impact on PbP.
- Adding extra insulation is not included in any cost optimal regions.
- > For both CP1 & CP2 low payback period is achieved by **all technologies**

Basic Conclusions on Office Buildings

Constr. Period 32: 2011-2017

- Existing HP show less LCC.
- New HP and Hybrid systems in combination with PVs & LED are within cost optimal region.
- PbP less than 15 years is given by Existing HP, new HP and Hybrid. VRF only in zones A & B.

Constr. Period 32: 1980-2018-2023

• Existing HP and a few hybrid scenarios always combined with PVs are within cost optimal region.

LCC, PEC & DPP Performance table

Office building

Best Interventions Packages for LCC, PEC & DPP for all periods and climate zones for OB

			Lowe	st LCC	C Lowest PEC						Lowe	Lowest DPP		
	CP/CI.Z	А	В	С	D	А	В	С	D	А	В	С	D	
Office Building	CP1	New HP No Insulation New AHU LED PV					New Insul New LE	VRF ation AHU ED V		All technologies produce similar results				
	CP2		Nev No Ins Upgrad LI P	v HP ulation de AHU ED VV			New Insul New LE	VRF ation AHU ED V		All technologies produce similar results				
	CP3		Existi LI P	ng HP ED VV		New LE P	VRF ED V		Existing HP PV					
	CP4		Existi P	ng HP V			New P	VRF V		Existing HP PV				

endon